- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Andes, David (1)
-
Andes, David R. (1)
-
Bechtel, Hans A. (1)
-
Braun, Doug R (1)
-
Bugni, Tim S (1)
-
Carlson, Caitlin M. (1)
-
Currie, Cameron R. (1)
-
Fang, Yihang (1)
-
Fournelle, John H. (1)
-
Gilbert, Pupa U. (1)
-
Ješovnik, Ana (1)
-
Li, Hongjie (1)
-
Olmos, Jose Luis (1)
-
Phillips, George N (1)
-
Rajski, Scott R (1)
-
Schultz, Ted R. (1)
-
Sosa-Calvo, Jeffrey (1)
-
Sun, Chang-Yu (1)
-
Thomas, Chris S (1)
-
Xu, Huifang (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carbapenem-resistant Enterobacteriaceae continue to threaten human health worldwide with few effective treatment options. New Delhi metallo--lactamase (NDM) enzymes are a contributing element that drive resistance to many -lactam- and carbapenem-based antimicrobials. Many NDM inhibitors are known, yet none are clinically viable. In this study, we present and characterize a new class of NDM-1 inhibitors based on a pyridine-2,6-dithiocarboxylic acid metal complex scaffold. These complexes display varied and unique activity profiles against NDM-1 in kinetic assays and serve to increase the effectiveness of meropenem, an established antibacterial, in assays using clinical Enterobacteriaceae isolates.more » « less
-
Li, Hongjie; Sun, Chang-Yu; Fang, Yihang; Carlson, Caitlin M.; Xu, Huifang; Ješovnik, Ana; Sosa-Calvo, Jeffrey; Zarnowski, Robert; Bechtel, Hans A.; Fournelle, John H.; et al (, Nature Communications)null (Ed.)Abstract Although calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO 3 ) 2 ] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior . Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized.more » « less
An official website of the United States government
